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Abstract

We introduce Scioto, Shared Collections of Task Objects,

a lightweight framework for providing task management on

distributed memory machines under one-sided and global-

view parallel programming models. Scioto provides local-

ity aware dynamic load balancing and interoperates with

MPI, ARMCI, and Global Arrays. Additionally, Scioto’s task

model and programming interface are compatible with many

other existing parallel models including UPC, SHMEM, and

CAF. Through task parallelism, the Scioto framework pro-

vides a solution for overcoming irregularity, load imbalance,

and heterogeneity as well as dynamic mapping of computa-

tion onto emerging architectures. In this paper, we present

the design and implementation of the Scioto framework and

demonstrate its effectiveness on the Unbalanced Tree Search

(UTS) benchmark and two quantum chemistry codes: the

closed shell Self-Consistent Field (SCF) method and a sparse

tensor contraction kernel extracted from a coupled cluster

computation. We explore the efficiency and scalability of

Scioto through these sample applications and demonstrate

that is offers low overhead, achieves good performance on

heterogeneous andmulticore clusters, and scales to hundreds

of processors.

1 Introduction

Task-parallel decomposition is a popular technique often

used to express parallelism in programs that exhibit irregular,

sparse, or nested parallelism[28]. In such programs, static

partitioning of the computation can lead to load imbalance

due to irregularity in the problem space, sparsity in the data,

or lack of parallel slackness. By decomposing the problem

into tasks and dynamically mapping the computation onto

available resources, these classes of applications are able to

achieve scalable parallel performance.

In addition to overcoming irregularity in the computa-
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tion, dynamic task scheduling can also be used to mitigate

irregularity present in the hardware. Modern trends in par-

allel computer architecture have given rise to heterogene-

ity among processors, heterogeneous cores within proces-

sors, and increasing nonuniformity in the memory hierarchy.

Clusters of multi- and future many- core processors intro-

duce additional opportunities for dynamic mapping of com-

putation to exploit data locality that is present in these mixed

shared and distributed memory systems.

Existing parallel programming tools provide developers

with the basic mechanisms needed to implement and man-

age task parallelism, however these primitives are often low

level requiring significant effort to achieve scalable perfor-

mance [10]. Many popular parallel programming models,

such as MPI [18], provide the programmer with a fixed,

process-centric view of the computation, requiring them to

either statically partition the computation, potentially leading

to imbalance, or to construct a higher-level system to manage

their parallelism.

One-sided parallel programming models such as MPI-

2 [19], SHMEM [2], ARMCI [21], and GASNET [7] offer an

alternative to conventional message passing by providing the

ability to perform asynchronous accesses to data stored on

remote nodes, often through hardware supported RDMA op-

erations. Partitioned Global Address Space (PGAS) models

such as Global Arrays (GA) [22], UPC [27], and Co-Array

Fortran (CAF) [23] build on these communication primitives

by providing the programmer with uniform and partitioned

global views of physically distributed shared data objects.

These programming models also offer an alternative to con-

ventional Distributed Shared Memory (DSM) systems that

promises higher parallel performance by allowing the pro-

grammer explicit control over data placement, consistency,

and communication. The asynchronous data access model

these systems support also allows for natural implementa-

tion of applications that exhibit irregular access patterns to

shared data. However, many one-sided and PGAS program-

ming models do not provide support for the dynamic com-

putation mapping required in order to support these applica-



tions.

Emerging high productivity parallel programming lan-

guages including Chapel [8], X10 [9], and Fortress [25] offer

global views of the data and flexible, high level constructs

for expressing parallelism. Under these models, the jobs of

managing parallelism and data locality are taken on by the

compiler and runtime systems. Scalable and efficient runtime

systems for these languages on distributed-memory comput-

ers is an active area of research and remains a challenging

problem.

Scioto aims to address these gaps by providing a scalable

framework that supports the dynamic creation, load balanc-

ing, and execution of concurrent tasks that operate within

one-sided and global address space models. With Scioto,

we extend these high-level global view data models with a

runtime system that supports a dynamically scheduled, task-

parallel view of the computation and achieves scalable per-

formance on distributed memory machines through locality-

aware task placement. In this paper, we describe an imple-

mentation of Scioto that interoperates with MPI, ARMCI,

and Global Arrays. In addition, Scioto’s programming in-

terface and task model are agnostic to the specific platform

providing support for the global data view and can be used to

provide similar services for a variety of one-sided and GAS

models. We evaluate the performance of the Scioto frame-

work on three applications: the Unbalanced Tree Search

(UTS) benchmark [10, 24], Self-Consistent Field (SCF)

computation [26], and a sparse tensor contraction kernel [4].

We begin our discussion with a conceptual overview of

the Scioto task model in Section 2, followed by a more in-

depth description of the programming interface in Section 3.

In Section 4 we give an example Global Arrays program

that uses Scioto for task management. We present the imple-

mentation of Scioto in Section 5 followed by an experimental

evaluation in Section 6.

2 Overview

Our goal when designing the Scioto framework was to

create a general and high level framework for lightweight

task management and locality aware dynamic load balancing

that can be used both directly and as a compilation target. We

have striven to design a task model and programming inter-

face that is interoperable with a variety of existing one-sided

and global address space models including MPI-1, MPI-2,

UPC, CAF, and Global Arrays. In this work we demonstrate

this model in the context of the global address space con-

structed using ARMCI [21]. In addition to ARMCI’s global

address space, we demonstrate interoperability with MPI and

the Global Arrays (GA) Toolkit. GA is parallel programming

tool that is built on ARMCI and provides a high level inter-

face to distributed shared multidimensional arrays.

2.1 Exposing Parallelism Though Task Objects

In a Scioto task-parallel application, the programmer ex-

poses parallelism by adding task objects to a shared task col-

lection, shown in Figure 2, and then collectively process-

Figure 1. A task descriptor is a contiguous object

with a header that contains task meta-data and a

body that contains task arguments.

ing the task collection in an MIMD parallel region. In the

context of Scioto, task objects are independent, transferable

units of work. Each task is described by its task descrip-

tor which contains task meta-information as well as user-

supplied task arguments. As shown in Figure 1, task descrip-

tors are contiguous objects that contain a standard header

where task meta-information is stored and a task body where

user-supplied task arguments are stored. The user views the

task body as a contiguous buffer with a configurable size

where they can store any arguments they wish to provide to

the task in any format. For example, this space can be used

to store structs or arrays and may contain portable references

to shared data or common local objects.

When a task is executed, it is provided with a reference to

the task collection it is executing on as well as a pointer to its

task descriptor. Tasks may gather inputs from their task de-

scriptor, from common local objects, or from shared data in

the global space. As a result of its execution, a task may cre-

ate new subtasks (e.g. continuations) or store results in the

shared global space or common local objects. Under the cur-

rent model, we focus on providing support for independent

tasks. Independent tasks are tasks that do not rely on the val-

ues produced by, or operations performed by other tasks in

order to execute. Once started, these tasks must be able to ex-

ecute to completion when executed in any order and with any

degree of concurrency. Tasks may synchronize through lock-

ing or other atomic operations when accessing shared data,

however a consistent locking discipline must be adopted that

ensures progress and avoids circular waiting that can lead to

deadlock.

2.2 Remote Access to Shared Data

Under Scioto, tasks are permitted to read from and write

to shared data. Many differentmechanisms for asynchronous

data sharing on distributed clusters are available. One-sided

communication libraries such as MPI-2 [19], ARMCI [21],

SHMEM [2], or GASNET [7] allow processes to expose

regions of their address space for remote access. These

tools provide primitives for allocating globally accessible

regions of memory, performing remote get and put opera-

tions, and synchronizing accesses to shared data. Addition-

ally, some provide wait-free synchronization mechanisms

such as atomic swap or atomic increment that allow for high



degrees of concurrency. Higher level languages and tools

such as UPC [27], CAF [23], or Global Arrays [22] allow

the user to create high level shared data structures such as

distributed multidimensional arrays and to interact with dis-

tributed global data objects through uniform or partitioned

mechanisms.

Scioto’s task model is intended to support any of these

data sharing mechanisms by allowing the user to place

portable references to global data objects in the body

of a task. For example, under many one-sided models

for communication, a portable shared pointer is the tuple

〈process, address〉 where process refers to the process that

has the data and address is address of the data in process’s

address space. Some PGAS languages, such as UPC, provide

language-level global pointers which can be easily placed

within a task body. Under Global Arrays uses, integers are

used to provide portable references to arrays and their indices

as shown in the example in Figure 1.

2.3 Common Local Objects

In addition to performing input and output with respect to

the global space, tasks are also permitted to access common

local objects. Common local objects are local data objects

that are common across all processes. In other words, these

are data objects where instances of the same type of object

(with possibly differing values) are available in the local ad-

dress space on all processes in the computation. These ob-

jects must be collectively registered with Scioto, which pro-

vides a portable reference so that no matter where a task ex-

ecutes, it is able to look up the instance of the object that is

local. This functionality can be used to enhance performance

by locally gathering intermediate results throughout a com-

putation. It is also key for interoperability with MPI because

it provides the only mechanism whereby tasks can produce

results due to MPI’s lack of global address space.

3 Programming Interface

Scioto presents the programmer with a global view of a

distributed collection of tasks referred to as a task collec-

tion. This task collection is implemented as an aggregation

of queues stored on each processor as shown in Figure 2. The

set of tasks is distributed across all patches of the collection

and each task is assigned an affinity with respect to the lo-

cal process. When selecting tasks for execution, tasks with

the highest affinity are processed first and tasks with lower

affinity are given lower priority. When load balancing is per-

formed, low affinity tasks are given the highest priority to be

transferred.

Scioto programs begin and end in the SPMD fashion of

ARMCI and MPI and collectively enter into a MIMD task-

parallel region when processing a task collection. A new

task collection is first seeded either in parallel or sequentially

with an initial workload. Once the task collection has been

seeded, all processors participating in the task collection col-

lectively call tc process() to enter a task-parallel phase

where tasks will be automatically scheduled for parallel ex-

Figure 2. Snapshot of a task collection distributed

across 4 processors. Tasks are prioritized based

on their affinity (color); tasks within the outer ring

are private and tasks within the inner disc are

shared.

ecution across all available compute resources. During this

stage, tasks may generate subtasks as they are executed. Al-

ternatively, if the programmer would like to rely on their ini-

tial task placement scheme, dynamic load balancing can be

disabled prior to entering the task parallel region, allowing

for a potential reduction in overhead.

3.1 Scioto Core API

tc_t tc_create(int task_sz, int chunk_sz, int max_sz)

void tc_destroy(tc_t tc)

void tc_add(tc_t tc, int proc, int affty, task_t *t)

void tc_process(tc_t tc)

A task collection is first created by collectively calling

tc create() and providing the maximum size of each

task (in bytes), the chunk size or granularity for load bal-

ancing (in tasks), and the maximum number of tasks that the

collection must be able to hold. As discussed in Section 2.1,

tasks contain an opaque user-defined body and the task queue

allows for multiple different task descriptors to exist in the

same queue. However, the user must inform the task collec-

tion of the largest task descriptors that they intend to use with

each collection (through the task sz parameter) in order to

allocate appropriate storage.

Tasks are added to the task collection by calling tc add

and providing the process on which to add the task as well

as the affinity the task has for the given process. Tasks are

added with copy in/out semantics. Thus, when the call to

tc add() returns, the task buffer is available for reuse.

Likewise, tasks are executed on a private copy of the task

descriptor allowing this buffer to be reused by the executing

task. In situations where tasks are spawned in phases, mul-

tiple task collections can be used and processed in sequence.

Likewise, once a task collection has been processed, it can

be reused by calling tc reset().

After adding the initial tasks to a collection, it is pro-

cessed via a collective call to tc process() which en-

ters a MIMD-parallel region where additional tasks may be

spawned via calls to tc add(). Only one task collection

may be processed at a time, but multiple task collections may



be added to while one is being processed allowing for phase-

based task parallelism. The call to tc process() returns

collectively when global termination is detected.

3.2 Task Management

typedef void (*task_callback_t)(tc_t tc, task_t *t)

int tc_register_callback(tc_t tc, callback_t fcn)

task_t *tc_task_create(int body_sz, task_handle_t th)

void tc_task_destroy(task_t *task);

void *tc_task_body(task_t *task);

Every task is represented by its task descriptor, shown in

Figure 1. A task descriptor wraps a user-defined data struc-

ture with a standard header that contains information used by

the task collection to schedule and execute the task. From the

point-of-viewof the Scioto runtime, a descriptor is a task t

object with a standard header and an opaque, user-defined

body. The header of every task descriptor contains a portable

task callback handle, cb execute. Task handles are inte-

gers that are generated by collective registration of the task’s

callback function and this handle is used to look up and dis-

patch the task’s callback function when the task is executed.

A task’s execution callback function takes a portable ref-

erence to the current task collection as well as a local pointer

to the descriptor that contains the task’s arguments. The task

collection reference is passed to each task when it is executed

and can be used for creating subtasks or interacting with the

runtime system. The API also provides convenient wrappers

for managing local task buffers including, creation, destruc-

tion, and reuse. The user-defined task body is accessed by

calling tc task body().

4 Example: Matrix-Matrix Multiplication

Figure 3 provides a code listing for an example Global

Arrays program that performs blocked matrix-matrix mul-

tiplication on blocked global arrays and the corresponding

task descriptor is given in Figure 1. In this example, all pro-

cesses first collectively create a task collection and register

mm task fcn() as a task callback. This function takes as

input a task with an mm task body that contains portable

references to the input and output arrays (integers under GA)

as well as the indices of the blocks to multiply. Next, a task

buffer is created on each process with an mm task body and

the mm task fcn() callback. The body of this task is filled

in with references to the global arrays being multiplied. Af-

ter this, all processes seed the task collection with the mul-

tiplication tasks. Each processor creates only the tasks cor-

responding to patches of the input arrays that are local by

calling the user-defined function get owner() and com-

paring the result with its own process id. After the task has

been added, the data in the task buffer has been copied

into the task collection and the buffer is reused by calling

tc task reuse().

5 Design and Implementation

Scioto task collections are implemented by allocating

contiguous arrays of task descriptors in ARMCI shared space

on each process. These arrays are treated as a contiguous

void mm_task_fcn(tc_t tc, task_t *task) {

mm_task *mm = tc_task_body(task);

// Perform multiplication on the given block

}

void main(int argc, char **argv) {

tc_t tc; task_handle_t *hdl;

task_t *task; mm_task *mm;

int A, B, C;

tc_init(&argc, &argv);

// Initialize Global Arrays: A, B, and C

tc = tc_create(sizeof(mm_task), CHUNK_SIZE,

MAX_TASKS);

hdl = tc_register(tc, mm_task_fcn);

task = tc_task_create(sizeof(mm_task), hdl);

mm = tc_task_body(task);

mm.A = A; mm.B = B; mm.C = C;

for (i=0; i < NUM_BLOCKS; i++)

for (j=0; j < NUM_BLOCKS; j++)

for (k=0; k < NUM_BLOCKS; k++)

if (get_owner(i,j,k) == me) {

mm.block[0] = i;

mm.block[1] = j;

mm.block[2] = k;

tc_add(tc, me, AFFINITY_HIGH, task);

tc_task_reuse(task);

}

tc_process(tc); tc_destroy(tc); tc_finalize();

}

Figure 3. Task-parallel blocked matrix-matrix multi-

plication using Global Arrays.

circular queues and head and tail indices are maintained to

mark the front and back of the queues. Each queue contains

a process’ current pool of available work and we refer to the

collective aggregation of all queues as the task collection.

Processes can push and pop tasks to and from both the

head and tail of their local queues. Processes are also able

to manipulate remote queues using ARMCI one-sided oper-

ations. Because queues are contiguous arrays, several tasks

can be simultaneously pushed onto or popped off of a remote

queue using a single one-sided communication operation.

During an operation on a remote queue, the queue must

be locked to prevent updates from colliding. This synchro-

nization leads a reduction in concurrency that can adversely

affect the performance of the local process as it can end up

waiting for thousands of cycles while a remote process ma-

nipulates its queue. In order to reduce contention between

local and remote access to shared queues, the queues are

split into local and shared portions. Local portions of the

queue can be accessed by the local process that without lock-

ing, while synchronization must be used when accessing the

shared portion of the queue. As the computation progresses,

processors move tasks between the shared and local portions

of the queue to make work available for load balancing or to

reclaim shared work for local execution. These operations

can be accomplished without copying by simply adjusting

the queue’s split pointer.

5.1 Dynamic Load Balancing

Scioto uses a locality-awareness enhanced version of

work stealing [5]. Under work stealing, processes that have
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exhausted their local work must search among their peers for

surplus work. This is done by randomly selecting a peer and

performing remote operations on its patch of the task collec-

tion to steal surplus work if any is available. In the context of

Scioto’s split queues, only work that is in the shared region

of a process’s queue may be stolen. The maximum number

of tasks that can be stolen through a single steal operation is

referred to as the chunk size.

Locality-awareness is implemented by prioritizing the

queue such that tasks with high local affinity are placed to-

ward the head of the queue and tasks with low affinity to the

local process are placed toward the tail. Steal operations are

then performed with respect to the tail of the queue and local

task processing is performed with respect to the head of the

queue. Thus, tasks with high affinity are most likely to exe-

cute on the local process and tasks with low affinity will be

the first to be stolen when load balancing is performed.

5.2 Termination Detection

In the context of Scioto, termination occurs when all pro-

cesses become idle and when no load balancing operations

are in progress. In order to detect this, we have implemented

a wave-based algorithm similar to that proposed by Francez

and Rodeh[11]. In this algorithm, a binary spanning tree is

mapped onto the process space and a token wave is passed

down and up the tree. The token is initially located at the root

of the tree and is split at each node as it is passed down the

tree. Once the token wave reaches the leaves, it reverses di-

rection and as nodes become passive and have received their

children’s tokens, they combine tokens and pass the result

up the tree. Tokens are initially colored white, however if a

node receives a black token from one of its children or has

performed a load balancing operation since the last down-

wave, it must color its token black to signal a re-vote. Token

coloring is necessary to ensure that early termination is not

detected when a passive process that has already passed a

Task Collection Cluster Cray XT4

Operation Performance Performance

Local Insert 0.4952µs 0.9330µs

Remote Insert 18.0819µs 27.018µs

Local Get 0.3613µs 0.6913µs

Remote Steal 29.0080µs 32.384µs

Table 1. Microbenchmark timings for core Scioto

operations.

white token up to its parent transitions from passive to ac-

tive.

In the average case, this algorithm requires log(p) mes-

sages to detect termination and empirical data comparing the

performance of this algorithm with the performance of MPI

and ARMCI barriers is presented in Figure 4. In this com-

parison, we detect termination after executing a single no-op

task and found that our algorithm can detect termination in

roughly twice the time required for ARMCI and MPI barrier

operations.

5.3 Token Coloring Optimization

Coloring the token black results in additional termination

detection waves and, due to one-sided stealing operations,

also requires an extra communication operation between the

thief and the victim process. This communication is nec-

essary to mark the victim as dirty, informing them that they

must color their token black to avoid early termination. How-

ever, marking the victim as dirty is not necessary under cer-

tain conditions, allowing for a reduction in the number of

messages.

For the purpose of discussion, we establish a votes-before

relation where pi → pj indicates that pi casts its vote before

pj . In the case of a binary spanning tree, this means that pi

is a descendant of pj .

Optimization: The victim, pv , of a steal operation only

needs to be marked as dirty if the thief, pt, has already

voted and ¬(pv → pt).

Proof: The purpose of pt marking pv dirty is for pt to retract

its vote. If pv → pt then if pt has voted, pv must also

have already voted and marking pv dirty will have no

effect.

6 Experimental Evaluation

Experiments were conducted on a heterogeneous cluster

and a Cray XT4 system. The cluster is configured with 32

2.8GHz AMDOpteron 254 nodes and 32 3.6GHz Intel Xeon

nodes. All nodes contain 4GB of memory and 10GBps Mel-

lanox Infiniband NICs. The Cray XT4 is configured with

3,744 2.6Ghz dual-core AMD Opteron 285 Processors run-

ning Cray Compute Node Linux. We are presently working

on porting Global Arrays to this system and because of this,

we are not yet able to report performance results for the SCF

and TCE applications on this system.
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6.1 Microbenchmark Performance

We constructed several microbenchmarks to measure the

performance of core local and remote task collection oper-

ations. Results are presented in Table 1 and were collected

using a task body size of 1kB and a chunk size of 10. Here

we can see that splitting the queue allows for lightweight,

lock-free local operations with insert and get taking under

1µs on both systems. Because the queues have been laid out

contiguously for remote access, remote operations also yield

good performance with 18µs and 27µs average time to add

a task to a remote queue and 29µs and 32µs average time to

perform a steal operation on the cluster and the Cray XT4,

respectively.

6.2 Target Applications

We evaluate the performance of Scioto using three appli-

cations: the Unbalanced Tree Search (UTS) benchmark, the

Self Consistent Field calculation (SCF), and TCE, a repre-

sentative tensor contraction kernel from the Tensor Contrac-

tion Engine. For each application, we havemodified the orig-

inal code to interoperate with Scioto and we compare the per-

formance of the Scioto implementationwith the performance

of the original version the application:

SCF: We have extended an existing Global Arrays im-

plementation of the closed-shell Self-Consistent Field

(SCF) method [26] with Scioto task collections. SCF is

a technique commonly used in ab initio computational

chemistry and involves irregular data access and the ac-

cumulation of results into large distributed data struc-

tures. This implementation computes the Fock matrix

using the non-relativistic SCF method from the Born-

Oppenheimer approximation. . Both the Fock and den-

sity matrices are distributed across all processors using

Global Arrays. In the original implementation, load bal-

ancing is achieved by replicating a work queue across
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all processes and performing atomic increment on a

shared counter to get the next available task.

TCE: The TCE application kernel is representative of

sparse tensor contraction operations performed by cou-

pled cluster models for ab initio electronic structure

modeling[4]. In this example, tensor contraction is per-

formed over two block-sparse tensors implemented us-

ing Global Arrays and the result is stored into a dis-

tributed output global array. This kernel stands to ben-

efit from Scioto due to irregularity introduced though

sparsity in the input tensors. The original implementa-

tion of TCE also uses a shared global task counter to

perform dynamic load balancing.

UTS: The UTS benchmark [10, 24] performs exhaustive

parallel search on a deterministic, highly unbalanced

search space. The UTS tree traversal starts with a sin-

gle task and proceeds in nested parallel style to generate

millions of tasks, one for each node in the tree. Due to

imbalance in the search space and the volume of tasks

created, the performance of UTS depends heavily on

efficient and lightweight dynamic load balancing. The

MPI implementation of UTS dynamically balances the

load using a custom work stealing implementation over

MPI’s two-sided message passing. In our evaluation,

we compare the MPI implementation with a modified

copy of the same program that uses Scioto for task man-

agement. In this implementation, common local objects

(see Section 2.3) are used to accumulate the tree statis-

tics gathered by UTS.

6.3 Performance Analysis

In order to show a clear trend on the heterogeneous clus-

ter, we have run our experiments with half Opteron and half

Xeon nodes. Thus, doubling the number of nodes also dou-
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bles the resources available to the application even though

the processors are not of uniform speed.

Figures 5 and 6 compare the speedup and parallel perfor-

mance of the original and Scioto implementations of the TCE

and SCF applications on the 64 node cluster. TCE shows

poor scaling and SCF also shows a slowdown in scaling as

we approach 64 processors. This is because both applications

rely on a shared global counter to perform locality-oblivious

dynamic load balancing. Under this scheme, all processes

have the complete list of tasks and the next available task

in the list is acquired by atomically incrementing the global

counter. In contrast to this, the Scioto implementations of

SCF and TCE show better scaling due to Scioto’s distributed

load balancing scheme. In the case of TCE, the Scioto imple-

mentation offers significantly better parallel performance and

for SCF, parallel performance is comparable with the global

counter scheme up to 32 processors and becomes better as

the original implementation of SCF yields lower scaling at

64 processors.

Figures 7 and 8 show the performance in total work units

processed per second of the UTS benchmark using Scioto

compared with the MPI implementation of the benchmark

on the cluster and Cray XT4 systems. Heterogeneity poses a

significant challenge to UTS as the performance of the differ-

ent types of cluster nodes on UTS’ SHA-1 implementation

varies significantly. On the cluster, Opteron nodes require

0.3158µs to process a single node on the UTS benchmark

and Xeon nodes require 0.4753µs, a 50% difference in per-

formance. In comparison, the Cray XT4 achieves 0.5681µs

per node. In both graphs, we can see that performance is

comparable between the Scioto and MPI implementations

and that Scioto offers higher performance due to reduced

overhead and the elimination of explicit polling operations

that must be performed to support work stealing under MPI.

Figure 7 further shows the effectiveness of the split queues

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  64  128  192  256  320  384  448  512

P
e
rf

o
rm

a
n
c
e
 (

M
ill

io
n
s
 o

f 
N

o
d
e
s
/s

e
c
)

Number of Processors

UTS-Scioto
UTS-MPI

Figure 8. Parallel performance of the UTS bench-

mark under Scioto and MPI on 512 nodes on the

Cray XT4.

comparedwith our original locked implementation of Scioto.

From this data, it is clear that splitting the queue yields

a significant increase in concurrency, leading to signifi-

cantly higher performance than was achievable with both our

locked queue implementation and UTS’ MPI work stealing

load balancer.

7 Related Work

The Scioto projects aims to synthesize a new parallel task-

ing system with the following properties: 1. High-level sup-

port for lightweight task management; 2. Locality-conscious

dynamic load balancing; 3. Interoperability with a variety

of existing one-sided and global address space programming

models; 4. Scalable performance on distributed memory ma-

chines.

Several systems have been developed that offer the pro-

grammer dynamically scheduled, task-based views of com-

putation. Cilk[12] is a parallel extension to the C program-

ming language that offers an elegant parallel tasking model,

allowing the user to fork and join tasks. Cilk’s tasking model

supports scheduling of fully strict tasks, while, at present,

Scioto’s task model focuses on independent tasks. Cilk-

NOW [6] supports the Cilk tasking model on distributed

memory systems and adds fault tolerance, however it fo-

cuses primarily on support for functional parallelism and

does not support a global address space. Concurrent ob-

ject systems such as Charm++[14], PREMA[3] or the Illinois

Concert System[15] are available on both shared and dis-

tributed memory systems and provide adaptive parallel pro-

gramming models based on concurrently executing migrat-

able objects. These systems provide an object-centric view

of the parallel computation rather than a process-centric view

and use message passing rather than a global shared address

space for data. New high productivity parallel programming

languages such as Chapel [8], X10 [9], and Fortress [25] of-

fer language-level primitives to support task parallelism. The



scalable implementation of the powerful task models of these

new languages is still a challenging problem and we believe

that the implementation and evaluation of the simpler Scioto

model on a range of application programs can offer useful

insights to their implementors.

Dynamic load balancing and work stealing schemes have

been widely investigated [5, 17]. Locality aware load bal-

ancing attempts to address communication efficiency by co-

locating tasks with their associated data and work has also

been done to investigate potential locality benefits from pri-

oritized dynamic load balancing[1].

Distributed Shared Memory systems (DSM) such as

Treadmarks [16] and Cluster OpenMP [13] provide the pro-

grammerwith a global view of distributed shared data. These

systems have faced significant performance and scalability

challenges on distributed memory systems due to communi-

cation overhead. One-sided and PGAS programming mod-

els offer high performance by allowing the programmer ex-

plicit control over data placement and communication. Mul-

tithreaded DSM systems such as DSM-Threads [20] allow

the programmer to write dynamically scheduled computa-

tion in a global address setting. However, many of these sys-

tems rely on fair thread scheduling and thus must multiplex

threads to ensure progress and perform full thread migration

when balancing the load. Scioto uses a lighter weight ap-

proach without fairness guarantees and because of this, does

not need to perform task migration.

8 Conclusions

We have presented Scioto, a task parallel framework for

one-sided and global address space parallel programming

models. Scioto offers an alternative means for expressing

parallelism through shared collections of task objects and

provides locality-aware dynamic load balancing. We have

evaluated the performance of our approach through three ap-

plications: SCF, TCE, and UTS and demonstrated that Scioto

offers a lightweight and scalable solution for managing par-

allelism.

We are presently working on extending our independent

task model with support for tasks that exhibit arbitrary inter-

task dependencies. In our future work, we will also evalu-

ate Scioto with additional global address space parallel mod-

els such as UPC. We plan for future enhancements, includ-

ing wait-free implementations of the distributed task collec-

tion, initial placement strategies, and multicore scheduling

enhancements.
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